Molecular Basis for the Dissociation Dynamics of Protein A-Immunoglobulin G1 Complex

نویسندگان

  • Fu-Feng Liu
  • Bo Huang
  • Xiao-Yan Dong
  • Yan Sun
چکیده

Staphylococcus aureus protein A (SpA) is the most popular affinity ligand for immunoglobulin G1 (IgG1). However, the molecular basis for the dissociation dynamics of SpA-IgG1 complex is unclear. Herein, coarse-grained (CG) molecular dynamics (MD) simulations with the Martini force field were used to study the dissociation dynamics of the complex. The CG-MD simulations were first verified by the agreement in the structural and interactional properties of SpA and human IgG1 (hIgG1) in the association process between the CG-MD and all-atom MD at different NaCl concentrations. Then, the CG-MD simulation studies focused on the molecular insight into the dissociation dynamics of SpA-hIgG1 complex at pH 3.0. It is found that there are four steps in the dissociation process of the complex. First, there is a slight conformational adjustment of helix II in SpA. This is followed by the phenomena that the electrostatic interactions provided by the three hot spots (Glu143, Arg146 and Lys154) of helix II of SpA break up, leading to the dissociation of helix II from the binding site of hIgG1. Subsequently, breakup of the hydrophobic interactions between helix I (Phe132, Tyr133 and His137) in SpA and hIgG1 occurs, resulting in the disengagement of helix I from its binding site of hIgG1. Finally, the non-specific interactions between SpA and hIgG1 decrease slowly till disappearance, leading to the complete dissociation of the SpA-hIgG1 complex. This work has revealed that CG-MD coupled with the Martini force field is an effective method for studying the dissociation dynamics of protein-protein complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations

The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Isothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin

Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...

متن کامل

A comprehensive study of HSA interaction with TMP using molecular docking and molecular dynamics methods: as an appropriate tool for drug delivery systems

Background: Human serum albumin (HSA) is one of the most prominent protein in human blood. Trimethoprim (TMP) is an efficient antibiotic drug for treatment of pneumocystis pneumonia (PCP). Patients with HIV/AIDS and cancer are extremely affected by the disease due to immune system deficiency. Objective: The aim of this study is to evaluate the molecular dynamics simulation (MD) of HSA with TMP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013